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Abstract—Layer-wise quantized neural networks (QNNs), 

which adopt different precisions for weights or activations in a 

layer-wise manner, have emerged as a promising approach for 

embedded systems. The layer-wise QNNs deploy only required 

number of data bits for the computation (e.g., convolution of 

weights and activations), which in turn reduces computation 

energy compared to the conventional QNNs. However, the 

layer-wise QNNs still cause a large amount of energy in the 

conventional memory systems, since memory accesses are not 

optimized for the required precision of each layer. To address 

this problem, we propose Quant-PIM, an energy-efficient 

processing-in-memory (PIM) accelerator for layer-wise QNNs. 

Quant-PIM selectively reads only required data bits within a 

data word depending on the precision, by deploying the modified 

I/O gating logics in a 3D stacked memory. Thus, Quant-PIM 

significantly reduces energy consumption for memory accesses. 

In addition, Quant-PIM improves the performance of layer-wise 

QNNs. When the required precision is half of the weight (or 

activation) size or less, Quant-PIM reads two data blocks in a 

single read operation by exploiting the saved memory bandwidth 

from the selective memory access, thus providing higher 

compute-throughput. Our simulation results show that 

Quant-PIM reduces system energy by 39.1~50.4% compared to the 

PIM system with 16-bit quantized precision, without accuracy loss. 
 

Index Terms—Processing-in-memory, accelerator, quantized 

neural network, layer-wise quantization, energy efficiency 

I. INTRODUCTION 

ECENTLY, deep neural networks (DNNs) have been widely 

adopted in various applications such as image classification 

and speech recognition. In general, DNN applications cause 

high energy consumption, since it requires millions of 

multiply-accumulate (MAC) operations and high memory 

bandwidth, both. This high energy consumption makes it 

difficult to run the DNN applications on energy-constrained 

embedded systems. To address this problem, a quantized neural 

network (QNN) has emerged as a viable solution for embedded 

systems [2]. The QNN reduces computation energy by replacing 

floating-point MAC operations with fixed-point MAC 

operations. In addition, since the QNN exploits relatively 

low-precision weight (or activation) instead of high-precision one, 

it has lower memory bandwidth requirement than the DNN. 

 However, as the volume of the input data and the number of 

layers increase, QNNs still cause high energy consumption. 

Several studies have reduced energy consumption by adopting 

different precisions for weights or activations in a layer-wise 
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manner [3][10], since the precision requirement varies across 

layers within a network. The layer-wise QNNs deploy only 

required number of data bits for the computation (e.g., 

convolution of weights and activations), which in turn reduces 

computation energy compared to the conventional QNNs. 

Though many researchers have focused on the computation 

energy reduction by adopting layer-wise QNNs [3][10], they did 

not consider the optimization of memory accesses for layer-wise 

QNNs. Even with low precision in the layer-wise QNNs, each 

single memory access still transfers a full data word (e.g., 64-bit 

or 32-bit); note, the conventional memory systems do not allow 

transferring data of which size is less than the data word size in 

a single memory access. Thus, the layer-wise QNNs cause a 

large amount of energy due to the non-optimized memory 

accesses, which is same as the conventional QNNs. 

 In this paper, we propose Quant-PIM, an energy-efficient 

processing-in-memory (PIM) accelerator for layer-wise QNNs. 

We adopt Quant-PIM to a high bandwidth memory (HBM), 

which is widely deployed for neural network (NN) hardware 

accelerators [7][8]; note HBM has recently been adopted to an 

embedded NN system [7]. Quant-PIM consists of two parts: i) 

I/O gating logics and ii) processing units for the gated I/O. In 

Quant-PIM, a single memory access selectively loads/stores 

only required data bits within a data word depending on the 

precision. To enable such selective memory accesses, we 

modify the I/O gating logics of the HBM. Quant-PIM controls 

the I/O gating logics depending on the required precision of a 

layer. In addition, to guarantee the MAC operations with any 

precision, we allocate multiple binary MAC units and 

accumulators into the base die of the HBM. Thus, Quant-PIM 

significantly reduces energy consumption for memory accesses 

depending on the required precision of a layer, while ensuring 

normal computation with any precision. Furthermore, 

Quant-PIM improves the performance of layer-wise QNNs. 

When the required precision is half of the weight (or activation) 

size or less, Quant-PIM reads two data blocks1 in a single read 

operation by exploiting the saved memory bandwidth from the 

selective memory access, achieving higher compute-throughput. 

II. RELATED WORKS 

There have been many studies on the accelerators for 

layer-wise QNNs [3][10][13]. Judd et al. introduced an 

accelerator which provides the bit-serial execution of the MAC 

operation with any precision [3]. The accelerator serially 

executes a bit operation per clock cycle with high parallelism, 

which significantly reduces computation energy. Umuroglu et al. 

also presented a vectorized bit-serial matrix multiplication 
  

1In this paper, a data block indicates the data accessed from the main 
memory with a single read operation, whose size is typically determined by 

the product of data bus width and burst length. 
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technique with high parallelism [13]. In addition, Sharma et al. 

proposed an accelerator with a bit-decomposition technique [10]. 

They divided a MAC operation into multiple sub-MAC 

operations to support variable precision, which reduces the 

amount of the required resources for the MAC operation. 

However, all the above studies focused on reducing 

computation energy for MAC operations, assuming that all the 

weights and activations are already prepared in on-chip buffers. 

They did not consider the optimization of memory accesses for 

layer-wise QNNs, thus causing a large amount of energy 

reading the data from the main memory. Different from the 

previous studies, our proposed technique selectively accesses 

only required data bits within the data word depending on the 

required precision of a layer, which significantly reduces energy 

consumption for memory accesses. To the best of our 

knowledge, this paper is the first study to optimize the memory 

accesses with any precision in the layer-wise QNNs. 

III. QUANT-PIM

We propose a PIM accelerator for layer-wise QNNs called 

Quant-PIM. Quant-PIM significantly reduces system energy, 

since 1) it reduces memory power consumption by selectively 

accessing only required data bits at a bit-level granularity, and 

2) it improves performance by reading two data blocks in a

single read operation when the required precision is half of the

weight (or activation) size or less.

A. Overall Architecture

As shown in Fig. 1, we adopt Quant-PIM to the HBM. The

HBM has two different parts: base die and core dies. Since the 

base die is a logic die (not a memory die), it has been widely 

deployed for implementing small accelerators [5][11]. We 

implement processing units of Quant-PIM into the base die of 

the HBM, which is called quantized MAC units (QMACs); we 

allocate eight QMACs (i.e., one QMAC per memory channel), 

since each memory channel is independently accessed. More 

importantly, we modify the I/O gating logics in the memory 

banks of the core dies. In the original HBM, the I/O gating 

logic accesses the columns in the row buffer at a word-level 

granularity, depending on the result of the column decoder. 

Accordingly, a single memory access in the original HBM 

transfers the full data word even with low precision. On the 

other hand, Quant-PIM allows memory accesses at a finer 

granularity than the original HBM. Depending on the required 

precision of a layer, Quant-PIM controls the I/O gating logics 

to access the columns in the row buffer at a bit-level granularity. 

B. Processing Flow

Fig. 2 describes the detailed design of Quant-PIM and the

procedures for Quant-PIM in a single memory channel. The 

procedures for Quant-PIM are as follows (① to ⑦ in Fig. 2). 

① The host processor offloads the MAC operations for

layer-wise QNNs by sending the memory address, data size,

and required precision to the QMAC.

② The local memory controller of the QMAC generates row

and column commands based on the memory address and

data size.

③ The QMAC sends the row/column command and required

precision to the target memory bank depending on the

memory address.

④ Quant-PIM controls the I/O gating logics in the memory

bank depending on the required precision, so that it

selectively reads only required data bits within a data word.

⑤ The QMAC executes the MAC operations based on the data

block loaded from the memory bank. Since one MAC

operation with n-bit precision is replaced with n2 1-bit MAC

operations [13], the QMAC has multiple binary MAC units

and accumulators. Considering the worst-case precision (i.e.,

16-bit) of the weights or activations in the conventional

QNNs, we allocate 256 (=162) binary MAC units and

accumulators in the QMAC. Thus, the QMAC guarantees

the MAC operations with 16-bit or less precision. The

accumulated result of the MAC operations is stored in the

result buffer.

⑥ The local memory controller of the QMAC stores the

accumulated result to the memory bank. Similar to the read

operation in step ④, Quant-PIM selectively stores the

required data bits based on the precision.

⑦ Quant-PIM repeats the step ② to ⑥ until all the offloaded

MAC operations are completed. Then, Quant-PIM notifies

the host processor that all the offloaded MAC operations are

completed through an interrupt signal.

Based on the procedures for Quant-PIM, Quant-PIM reduces 

I/O power when the required precision is lower than 16-bit, 

since it selectively accesses only required data bits within a data 

word. Thus, Quant-PIM reduces the total HBM power 

consumption, which results in the system energy reduction; I/O 

power occupies up to 70% of the total HBM power [12].  

Furthermore, Quant-PIM improves the performance of 

layer-wise QNNs, when the required precision is half of the 

weight (or activation) size or less (i.e., 8-bit or less). In step ④, 

Quant-PIM reads two data blocks (data a1 and a2 in Fig. 2) in a 

single memory operation by exploiting the saved memory 

bandwidth from the selective memory access. Note Quant-PIM 

coalesces memory requests to two data block addresses. 

However, Quant-PIM is different from a memory coalescing 

Fig. 2. Detailed design of Quant-PIM and procedures for Quant-PIM in a 

single memory channel. 

Fig. 1. Overview of the proposed Quant-PIM. 
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technique which is widely adopted in GPU; the memory 

coalescing technique only coalesces memory requests to the 

same data block address. In step ⑤, the QMAC executes the 

MAC operations for both data blocks a1 and a2 at the same time, 

by deploying the binary MAC units and accumulators; since the 

8-bit MAC operations for a single data block requires only 64 

binary MAC units among 256 binary MAC units, Quant-PIM is 

able to simultaneously execute the 8-bit MAC operations for 

two data blocks. Thus, Quant-PIM provides higher 

compute-throughput, resulting in the system energy reduction. 

IV. EVALUATION 

A. Methodology 

Table I shows the required precision per layer with relative 

accuracy compared to the 16-bit quantized precision for three 

representative neural networks [3]. For quantization, a uniform 

quantization method is adopted, which replaces 32-bit 

floating-point data with 16-bit integer data by deploying the 

following equation (which is a general quantization method [8]).  

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎 = 𝑟𝑒𝑎𝑙 𝑑𝑎𝑡𝑎 ∗ 𝑠𝑐𝑎𝑙𝑒        (1) 

The required precision is obtained by repeatedly removing the 

least significant bit (LSB) of the 16-bit quantized weights and 

activations until the relative accuracy decreases; note 

removing the LSBs of the already quantized weights or 

activations is also the uniform quantization method. Based on 

Table I, we evaluate the execution time, power consumption, 

peak on-chip temperature, and system energy of Quant-PIM 

across neural networks. We consider a 16-bit PIM system as 

our baseline; the 16-bit PIM system reads 16-bit quantized 

weights and activations from the HBM and then execute the 

MAC operations with 16-bit precision. We first implement the 

QMAC (in the base die) in Fig. 2 with Verilog HDL using 

Design Compiler and IC Compiler based on Samsung System 

LSI 28nm process technology. We set the clock frequency of 

the QMAC to 1GHz, operating with the HBM synchronously. 

According to the implementation result, the QMAC is able to 

operate at 1GHz even in the worst-case precision (i.e., 16-bit). 

In addition, we obtain the dynamic power and leakage power 

of the QMAC by 1.0~12.7mW and 36.2μW, respectively; we 

extract dynamic power depending on the required precision. 

For the additional circuits in I/O gating logics (in the core die), 

we conservatively evaluate the power consumption based on 

logic process technology2. According to our implementation, 

we extract the dynamic power and leakage power of the 

additional circuits in I/O gating logics by 22.9mW and 

14.7μW per memory channel, respectively. 

We evaluate the execution time and power consumption of 

Quant-PIM across neural networks using gem5-aladdin [9] 

with a cycle-accurate DRAM simulator [6]. We reflect the 

clock frequency and power consumption for both the 
  

2 The logic implemented with memory process technology is more 

energy-efficient than that implemented with logic process technology [4]. 

implemented QMAC and additional circuits in I/O gating 

logics to the simulator. We also reflect the performance and 

power of the HBM2 referring to the timing/current parameters 

[5][6][11]. Based on the power consumption, we evaluate the 

peak on-chip temperature of Quant-PIM using HotSpot 6.0 

[14]. Since peak on-chip temperature is strongly affected by 

heat dissipated from power consuming units such as GPU, we 

assume that the HBM (including Quant-PIM) is integrated 

with a high-end GPU for a gaming console [15]. We also 

evaluate the system energy and area overhead of Quant-PIM. 

B. Results 

1) Execution time 

Fig. 3 (left) shows the execution time of Quant-PIM across 

neural networks. Quant-PIM reduces execution time by 

19.9~42.1% (27.4~42.1%) compared to the 16-bit PIM system, 

while maintaining 100% (99%) relative accuracy. We break 

down the execution time for GoogLeNet3 into each layer, as 

shown in Fig. 3 (right). Quant-PIM (100%) significantly 

reduces execution time at the convolution layer 2, 5, 8, and 11 

compared to 16-bit PIM. When 1% relative accuracy loss is 

tolerable, Quant-PIM (99%) additionally reduces execution time 

at the convolution layer 4. As explained in Section III, when the 

required precision is 8-bit or less, Quant-PIM simultaneously 

reads two data blocks and executes MAC operations for the two 

data blocks. Thus, Quant-PIM offers high compute-throughput, 

resulting in the short execution time for layer-wise QNNs. 
 

2) Power consumption 

Fig. 4 (left) shows the power consumption of Quant-PIM 

across neural networks. Quant-PIM reduces power consumption 

by 15.4~18.2% (14.2~19.6%) compared to the 16-bit PIM 

system, while maintaining 100% (99%) relative accuracy. We 

break down the power consumption for GoogLeNet into each 

layer, as shown in Fig. 4 (right). As explained in Section III, 

Quant-PIM reduces I/O power when the required precision is 

lower than 16-bit, since it selectively accesses only required 

data bits. However, Quant-PIM (100%) does not reduce the 

power (not energy) consumption at the convolution layer 2, 5, 
  

3We present the layer-wise results only for GoogLeNet due to the page limit. 

TABLE I 

REQUIRED PRECISION PER LAYER WITH RELATIVE ACCURACY 

Network 100% relative accuracy 99% relative accuracy 

GoogLeNet 10-8-10-9-8-10-9-8-9-10-7 10-8-9-8-8-9-10-8-9-10-8 

AlexNet 9-8-5-5-7 9-7-4-5-7 

NiN 8-8-8-9-7-8-8-9-9-8-8-8 8-8-7-9-7-8-8-9-9-8-7-8 

 
Fig. 4. Power consumption across neural networks (left) and layer-wise power 

consumption for GoogLeNet depending on the required precision (right). 

 
Fig. 3. Execution time across neural networks (left) and layer-wise execution 

time for GoogLeNet depending on the required precision (right). 
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and 8, since two weights or activations (16-bit, in total) in 

different data blocks are transferred together; the required 

precision is 8-bit. With 1% relative accuracy loss, Quant-PIM 

(99%) does not reduce power consumption at the convolution 

layer 4 and 11 as well; the required precision is 8-bit. Though 

Quant-PIM causes additional power from the additional circuits 

in I/O gating logics, this power overhead is only 2.2% of the 

total power consumption, which is much smaller than the I/O 

power reduction (up to 19.6%). 
 

3) Peak on-chip temperature 

Based on the power consumption for neural networks, we 

analyze the peak on-chip temperature, considering heat 

dissipated from the GPU. The peak on-chip temperature of the 

16-bit PIM system is 88.2℃ for all the neural networks. On 

the other hand, the peak on-chip temperature of Quant-PIM is 

84.8℃, 85.4℃, and 84.9℃ for GoogLeNet, AlexNet, and 

NiN, respectively. In all the neural networks, Quant-PIM has 

lower peak on-chip temperature than the 16-bit PIM system, 

since it reduces I/O power consumption. 
 

4) System energy 

Fig. 5 shows the system energy of Quant-PIM across neural 

networks. Quant-PIM reduces system energy by 39.1~50.4% 

(38.3~56.4%) compared to the 16-bit PIM system, while 

maintaining 100% (99%) relative accuracy. Since the 

accelerator itself causes negligible energy (< 1% of the total 

system energy) due to its extremely small power, the HBM 

(memory) energy accounts for most of the total system energy. 

Quant-PIM (both 100% and 99%) significantly reduces the 

dynamic and leakage energies of the HBM compared to the 

16-bit PIM system due to the following reasons: 1) Quant-PIM 

reduces power consumption when the required precision is 

lower than 16-bit. 2) Quant-PIM provides higher 

compute-throughput when the required precision is 8-bit or less, 

which results in the short execution time for layer-wise QNNs. 

In addition, Quant-PIM (both 100% and 99%) has lower HBM 

refresh energy than the 16-bit PIM system. When peak on-chip 

temperature exceeds 85℃, the HBM requires frequent refresh 

operations to retain the data in the memory cells, which in turn 

increases refresh energy [1]. As explained earlier, Quant-PIM 

has peak on-chip temperature lower than 85℃ in most cases, 

which leads to lower refresh energy. Though the peak on-chip 

temperature of Quant-PIM exceeds 85℃, HBM refresh energy 

is reduced due to the short execution time. 
 

5) Area overhead 

According to the implementation results, the area is only 

0.16mm2 and 0.02mm2 for all the QMACs and additional 

circuits in I/O gating logics, respectively. Since the area of the 

HBM base die is 96mm2 [11], Quant-PIM causes negligible 

area overhead (< 0.2% of the HBM base die area). 

V. CONCLUSION 

We present a PIM accelerator for layer-wise QNNs called 

Quant-PIM. Quant-PIM significantly reduces system energy, 

since 1) it reduces memory power consumption by selectively 

accessing only required data bits at a bit-level granularity, and 2) 

it improves performance by reading two data blocks in a single 

read operation when the required precision is half of the weight 

(or activation) size or less. Our simulation results show that 

Quant-PIM reduces system energy by 39.1~50.4% without 

accuracy loss, compared to the 16-bit PIM system. Though we 

only consider the layer-wise QNNs maintaining 100% (99%) 

relative accuracy, Quant-PIM could further improve energy 

efficiency when tolerating moderate accuracy loss. For example, 

in the case of GoogLeNet with 4-bit quantization, Quant-PIM 

reduces system energy by 67.6% with 89.4% relative accuracy, 

compared to the 16-bit PIM system. We expect that Quant-PIM 

synergistically co-operates with the recent accelerators for 

energy-efficient layer-wise QNNs. 
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Fig. 5. System energy breakdown across neural networks. 
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